|
|
@ -0,0 +1,40 @@
|
|
|
1
|
{-
|
|
|
2
|
- Imperative programming in Haskell.
|
|
|
3
|
-
|
|
|
4
|
- Another monadic exercise.
|
|
|
5
|
-}
|
|
|
6
|
module ImperativeProgramming where
|
|
|
7
|
|
|
|
8
|
import Data.Maybe (fromJust)
|
|
|
9
|
import qualified Data.Map as M
|
|
|
10
|
import Control.Monad (liftM)
|
|
|
11
|
import Control.Applicative ((<$>), (<*>))
|
|
|
12
|
|
|
|
13
|
example = do
|
|
|
14
|
"x" .= 3
|
|
|
15
|
"x" .+= 4
|
|
|
16
|
"y" .= (-1)
|
|
|
17
|
"x" .+ "y"
|
|
|
18
|
|
|
|
19
|
data Imperative a b = Imperative (M.Map String a -> (M.Map String a, b))
|
|
|
20
|
|
|
|
21
|
executeImperative env (Imperative program) = program env
|
|
|
22
|
|
|
|
23
|
instance Monad (Imperative a) where
|
|
|
24
|
Imperative lastOperation >>= action = Imperative $ \env ->
|
|
|
25
|
let (env', value) = lastOperation env
|
|
|
26
|
(Imperative f) = action value
|
|
|
27
|
in f env'
|
|
|
28
|
|
|
|
29
|
return x = Imperative $ \env -> (env, x)
|
|
|
30
|
|
|
|
31
|
name .= value = Imperative $ \env -> (M.insert name value env, value)
|
|
|
32
|
name .+= value = Imperative $ \env ->
|
|
|
33
|
(M.insertWith (+) name value env, value + (fromJust $M.lookup name env))
|
|
|
34
|
binaryOp op = \var1 var2 -> Imperative $ \env ->
|
|
|
35
|
(env, fromJust $ op <$> M.lookup var1 env <*> M.lookup var2 env)
|
|
|
36
|
|
|
|
37
|
(.+) = binaryOp (+)
|
|
|
38
|
(.-) = binaryOp (-)
|
|
|
39
|
(.*) = binaryOp (*)
|
|
|
40
|
(./) = binaryOp (/)
|